OPTIMIZAION OF RESOURCE USAGE AMONG PRECAST AND THE CONVENTIONAL CONSTRUCTION TECHNIQUES

J.K.Roopa Salette¹,S.Aravind²

PG Student, Assistant Professor in Velammal Engineering College

ABSTRACT – Different construction technique helps to complete the project earlier but it may be costlier and other construction technique the project can be completed with a reduced cost and increased time duration. The main aim is to evaluate precast and conventional construction techniques used in the recent construction industry based on the knowing the cost and time for the four different cases which is to be considered in the project. Time and Cost data are collected for the four different cases based the values got the data table is formed. From the data's collected the analysis is to be done by using the Earned value analysis method to find the earned value percentage for cost and time of the construction project for the different cases and sub-cases considered in the project. The mathematical equation is to be generated from the Earned Value percentage found for each case. By which the separate Equation for cost and time for different cases is generated. Graph is plotted from the equations generated. This will be helpful for each construction firm to know the cost and time of construction of residential building by constructing different components of the structure using precast construction technique. The suggestions are given for the use of precast construction technique in the construction of the residential building.

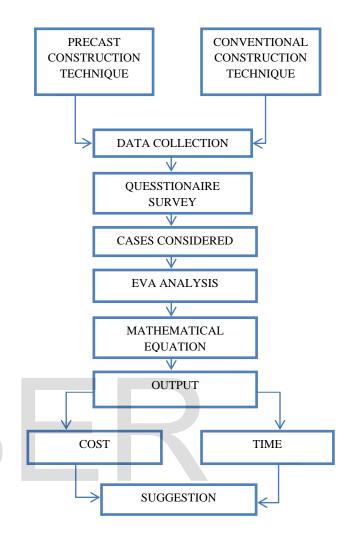
INTRODUCTION:

Precast construction technique is one of the modern construction techniques which are being used widely now days in various parts of our country. It has its own advantages and disadvantages. The time of construction can be reduced, comfortable, safe, versatile, healthy, optimized and durable. Some of the disadvantages caused while using precast construction technique is its costlier when used for small projects, requires space, heavy equipment's, proper transportation. Now a days construction of the residential buildings for a large scale project are done using precast construction technique, mainly the government projects done by Slum clearance board, Housing boards etc. But precast construction technique is not preferred by most of the construction companies all around are country.

OBJECTIVES:

- 1. To optimize the cost and time in the construction of building by using alternative construction technique.
- 2. To generate mathematical equation.
- 3. To suggest an optimum solution.

LITERATURE REVIEW:


Different journals presented by different authors gave various opinions about the precast construction technique and the other optimizing techniques. The ongoing situation of the precast construction industry in India was studied by N.Dinesh kumar, P.Kathirvel(2015) . The effective cost for the single multi storey residential using precast construction technique was given in comparison with cast in situ construction technique. The cost of double storey building which was constructed by precast construction technique was 13% higher than that of the same building constructed by conventional construction technique. Vice versa the duration of construction of the double storey building by precast construction technique 63 days lesser than the conventional construction technique.

The comparison is done between the precast and the conventional construction technique for the existing school building at Thanjavur, Tamilnadu by C.Sivapriya and S.Senthilkumar(2016). The total area of construction is 18880sq.m. Number of storey is G+7. The components considered in the project are 1.Wall panels, 2.Columns, 3.Beams, 4.Hallow slabs. Cost for the mold, erection and the finishing process is known and the final analysis is done. In this project the cost of the project is reduced to 20% by using precast construction technique than the conventional construction technique.

From this it is known that when the size of the project is less the cost increases while using precast construction technique which is reduced when the size of the project is greater but the duration remains the same. The duration of the project is less always whether the project is a small scale or the large scale project.

METHODOLOGY:

The chapter will define the methods used to conduct the research. This chapter will include information about how the data were collected and how they are standardized for the hypothesis. In the addition data analysis procedures will be provided.

DATA COLLECTION:

The cost and the duration details for the precast and the conventional construction technique are collected from the different construction firms. From the data's know the advantages and the disadvantages of both the construction technique are found out. Various difficulties faced while using conventional construction technique and how it is resolved by using precast construction technique are known.

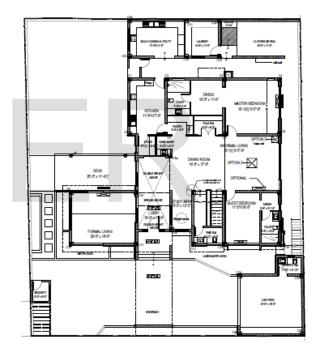
QUESSTIONAIRE SURVEY:

Further data's are collected using the questionnaire survey. The preferences from various expect about the precast and the conventional construction technique is known. Totally 30 samples were collected. From which some of the data are collected from the Theoretical experts and the other half of the ample are got from the Practical experts. Their opinions were greatly varied. The theoretical experts prefer precast construction technique while others prefer mainly conventional. But some are sure that the precast construction technique is the future upcoming technique which is going to be used all over the country.

Totally 19 questions were asked based on the factors considered in the precast construction technique, mainly the cost, time, aesthetics etc.

No of Questions	Strongly Agree	Agree	Undecided	Disagree	StronglyDisagree	
	100%	75%	50%	25%	0%	
1	6	14	2	7	1	30
2	8	18	1.00	4		30
3	6	15	5	4		30
4	2	14	3	11		30
5	4	12	6	8		30
6	2	11	4	13		30
7	4	16	3	6	1	30
8	3	14	5	7	1	30
9	8	17	2	3		30
10	3	17	5	3	2	30
11	3	16	3	6	2	30
12	5	8	7	9	1	30
13	3	9	6	12		30
14		9	8	13		30
15	4	15	3	8		30
16	4	14	4	7	1	30
17	4	13	4	8	1	30
18	8	15	2	5		30
19	3	14	5	8		30
Average	4	14	4	7	1	
Percentage	13%	46%	13%	25%	3%	100%

Table 1 Percentage Representation


Based on the percentage the preference for the precast construction technique is known.

USAGE OF PRECAST CONSTRUCTION						
	TECHNIQUE					
SA	Agree	Undecided	Disagree	SD		
100%	75%	50%	25%	0%		

13% 46% 13% 25% 3%	13%	46%	13%	25%	3%
--------------------	-----	-----	-----	-----	----

46% agree to use the precast construction technique but doesn't use the precast construction in their site. Only 13% of companies precast construction in their site. Other 13% doesn't have any idea about the precast construction technique. 25% sticks on to the conventional construction technique. The last 3% never want to use the precast construction technique.

EXISTING PLAN:

CASES CONSIDERED:

The project is to be done considering the real time residential construction project. The four cases are taken into consideration followed by the sub-cases.

> **CASE I** (C_1) : Considering 3 floors **CASE II** (C_2) : Considering 5 floors

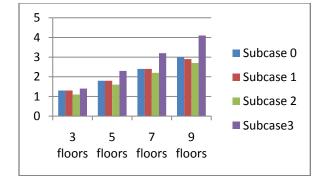
CASE III (C₃) : Considering 7 floors

CASE IV (C₄) : Considering 9 floors

The sub cases considered in the project are

SUB-CASE I (SC_0) : No Changes

SUB-CASE II (SC_1) : Changing beam and column into precast

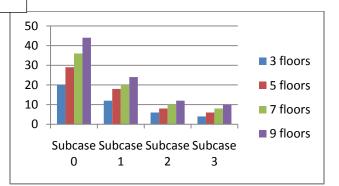

SUB-CASE III (SC₂): Changing beam, column and slab into precast

SUB-CASE IV (SC₃): Changing beam, column, slab and wall into precast

SUB-CASE V (SC₅) : Modular Structure

Time and Cost data are collected for the four different cases based the values got the data table is formed. Separate data tables are used to enter the time and the cost.

		S	UB-CAS	SES		
S		SC ₀	SC ₁	SC ₂	SC ₃	SC ₄
NO OF FLOORS	C ₁	1.3cr	1.3cr	1.1cr	1.4cr	
) OF F	C ₂	1.8cr	1.8cr	1.6cr	2.3cr	
N	C ₃	2.4cr	2.4cr	2.2cr	3.2cr	
	C ₄	3cr	2.9cr	2.7cr	4.1cr	
	TABLE 2: CC	ST TAI	BLE	1	1	I


CHART 1: COST DIFFERENCE

X Axis - No's of floors

Y Axis - Cost in Crores

SUB-CASES						
-						
	SC ₀	SC ₁	SC ₂	SC ₃	SC ₄	
C ₁	1yr8m	1 yr	6m	4m15d		
	- F					
C ₂	2yr5m	1yr6m	8m10d	7 m		
C ₃	3yr	1yr8m	10m	8m18d		
C ₄	3yr8m	2yrs	1yr	10m		
	C ₂	$\begin{array}{c c} C_1 & 1yr8m \\ \hline C_2 & 2yr5m \\ \hline C_3 & 3yr \\ \hline \end{array}$	SC0SC1C11yr8mC22yr5mC33yr1yr8m	SC0 SC1 SC2 C1 1yr8m 1yr 6m C2 2yr5m 1yr6m 8m10d C3 3yr 1yr8m 10m	SC0 SC1 SC2 SC3 C1 1yr8m 1yr 6m 4m15d C2 2yr5m 1yr6m 8m10d 7 m C3 3yr 1yr8m 10m 8m18d	

BLE 3: DURATION TABLE

CHART 2: TIME VARIATION

IJSER © 2017 http://www.ijser.org

X Axis – Subcases

Y Axis – Duration in months

EARNED VALUE ANALYSIS:

Cost and Time is analyzed using Earned Value Analysis. EVA is used for measuring the date of completion and cost of completion of the project. For earned value analysis the following values should be considered.

1). Planned Value:

Budgeted cost of work schedule.

2). Actual cost:

Actual cost of work performed.

3). Earned value:

Budgeted cost of the work

performed.

These three values are combined to determine the work being accomplished as per plan. Different measures to different types of tasks. So the Earned value analysis can also be used for different construction techniques. From this analysis earned value percentage is known by which the mathematical equations are formed.

MATHEMATICAL EQUATION:

The mathematical Equations are generated using the Earned Value Percentage. A linear equation is created based on the cost and time values estimated and scheduled for the existing plan for the precast and the conventional construction technique. Helps to find which construction technique is efficient.

DATA SHEET:

Data sheets were prepared in comparison between the conventional and the precast construction technique. Based on their cost and time data's collected from the construction firms.

GENERAL DETAILS:

Precast construction technique:

S.No	Elements	Description
1.	Grade of concrete	M35
2.	Grade for Grout	M40
3.	Admixture	CpW(Replacemen
		t to reduce water
		usage)
	Properties	
	• Appearance	White \ Pale
		yellow
	• Chlorine	0.05 max
	• Rate of	5wt*90Degree
	Solution in	
	water	
	• Density	0.89
	• %Added to	0.2%to0.3%
	the weight of	
	the cement	
	(No need of excess	
	curing)	
	• 1cum of	200ml
	Concrete	
4.	Concrete\cum	R.5000
5.	Machineries	
	1).Concrete	Rs.15000+5000
	vibrator(PV-2)	
	• No	10
	2).Table vibrator	R.54000
	• No	1
	3).Bar bending eqp	Rs.2.2 lakhs

	• No	1
	4).Cutting Machine	Rs.1.75 lakhs
		Rs.10000
	• Blade	
	• No	1
	Cuts upto	32mm
	5).Mini Mixer	Rs.40000
	(Grouting)	
	• No	2
	6).Tower Crane	Rs.2.5 lakhs
	(1Month/Double shift	
	24hrs)	
	7).Mobile Crane	Rs.1.65 lakhs
	(1Month/12hrs)	
	8).Hydra Crane	Rs.50000
	(1Month/24hrs)	
6.	Labours	150 Labours/day
	Helper(8hrs)	Rs.350/Labour
	Mason(8hrs)	Rs.400/Labour
	Steel Fitter(8hrs)	Rs.400/Labour
	Carpenter(8hrs)	Rs.400/Labour
	Operator(8hrs)	Rs.500/Labour

	Grouting(P)		
	Erection (P)		
	Machinery(P)		
4.	Reinforcement	16mmdia	16mmdia
		20mmdia	20mmdia
		25mmdia	
5.	Stirrups	8mmdia	Same
		10mmdia	
		@200mm	
		Spacing	
		(Less no	
		of rebar	
		due to	
		the pipes	
		used for	
		grout.)	
6.	Duration	15	Takes longer
		columns	due to
		per day	shuttering
			and curing

COLUMN:

SNo	Elements	Precast	Conventional
1.	Grade of	M35	M25
	Concrete		
2.	Size of column	0.45*0.23	0.45*0.23
3.	Rate per cum	Rs.28880	Rs.12350
	Concrete		
	Labour		
	Steel		
	Shuttering		
	Handling		
	Corrugated		
	pipe(P)		

BEAM:

SNo	Elements	Precast	Conventional
1.	Grade of	M35	M25
	Concrete		
2.	Size of Beam	0.23*0.45	0.23*0.45
3.	Rate per cum	Rs.22475	Rs.15000
	Concrete		
	Labour		
	Steel		
	Shuttering		
	Handling		
	Corrugated		
	pipe(P)		
	Grouting(P)		
	Erection (P)		

	Machinery(P)		
4.	Reinforcement	20mmdia	Same
		25mmdia	
5.	Duration	4 to 5	Takes longer
		Beams	due to
		per day	shuttering
			and curing

SLAB:

SNo	Elements	Precast	Conventional
1.	Grade of	M35	M25
	Concrete		
2.	<u>Rate per cum</u>	Rs.18000	Rs.14000
	Concrete		
	Labour		
	Steel		
	Shuttering		
	Handling		
	Corrugated		
	pipe(P)		
	Grouting(P)		
	Erection (P)		
	Machinery(P)		
3.	Topping	Rs.9000	Not required
	concrete		
4.	Duration	4 to 5	Takes longer
		Beams	due to
		per day	shuttering
			and curing
			takes more
			than 30 Days

WALL:

SNo	Elements	Precast	Conventional
1.	Grade of	M35	M25
	Concrete		
2.	Rate per cum	Rs.20500	Rs.3661
3.	Duration	15 walls	Takes a long
		per day	time

CONCLUSION:

The cost details has been estimated for each and every cases that are taken into account and the difference in cost and time between the precast and the conventional construction technique are found out. Further the analysis is to be done with the data's collected and estimated with the help of the existing plan. And the mathematical equation will be generated to give an optimized solution in order to use the precast construction in all the construction projects.

REFERENCES:

10). Zandhalin.K . (2008), 'Resource Optimization Of Construction Operations Using AOA-Based Stimulation', Professional paper, ISSN 1726-4529. Rhuta Joshi. and Prof. V. Z. Patil (2013),' Resource Scheduling of Construction Project: Case Study', International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064.

2). Kuo-Chuan Shih. and Shu-Shun Liu (2006),'Optimization Model Of External ResourceAllocation For Resource-Constrains ProjectSchedueling Problems', ISARC.

3). B. S. K. Reddy. SK. Nagaraju. and MD. Salman (2015), 'A Study On Optimization Of Resources For Multiple Projects By Using Primavera' Journal of Engineering Science and Technology, Vol. 10, No. 2 (2015) 235 – 248.

4). Francisco Javier Gutierrez Garcia, Pedro Pérez Díaz and Pedro Sanchez Luis (2014), 'Optimization of Resource in the Industry of Construction' Volume 8, No. 9 (Serial No. 82), pp. 1145-1150 Journal of Civil Engineering and Architecture, ISSN 1934-7359, USA.

5). Anuja Rajguru, Parag and Mahatme (2009),' Effective Techniques In Cost Optimization Of Construction Project: An Review ', IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308.

6). C.Sivapriya1 and S.Senthamilkumar (2016), 'Building Cost Comparison of Precast Concrete Construction with Conventional Construction' International Journal of Innovative Research in Science, Engineering and Vol. 5, Issue 5.

7). Georgekutty C.K and Dr.George Mathew (2012), 'Research Methodology For Material Optimization In Construction Projects' International Journal of Engineering Research & Technology (IJERT) Vol. 1 Issue 6, ISSN: 2278-0181.

8). Sami Mutafa Mohamed Elhassan, Noor Amila Wan Abdullah Zawawi and Zulkipli B. Ghazali (2011),'Decision making framework for optimizing construction management objectives: A review', Recent Advances in Engineering. 9). Uroš Klanšek and Mirko Pšunder (2007), 'Cost Optimization Of Construction Project Schedules'. Construction Management.Solevina.

10).Ninjal M Parekh, and Bhupendra M Marvadi(2015), 'Comparitive Study Of VariousConstruction Techniques', ISSN: 0975 – 6744 ,Volume 3, Issue 2.

11). N.Dineshkumar, and P.Kathirvel (2015), ' Comparative Study on Prefabrication Construction with Cast In-Situ Construction of Residential Buildings' International Journal of Innovative Science, Engineering & Technology, Vol. 2 Issue 4.

ER